A smooth block bootstrap for quantile regression with time series

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A generalized block bootstrap for seasonal time series

When time series data contain a periodic/seasonal component, the usual block bootstrap procedures are not directly applicable. We propose a modification of the block bootstrap—the Generalized Seasonal Block Bootstrap (GSBB)—and show its asymptotic consistency without undue restrictions on the relative size of the period and block size. Notably, it is exactly such restrictions that limit the app...

متن کامل

Sieve Bootstrap for Time Series Sieve Bootstrap for Time Series

We study a bootstrap method which is based on the method of sieves. A linear process is approximated by a sequence of autoregressive processes of order p = pn, where pn ! 1 ; p n = on as the sample size n ! 1. F or given data, we t h e n estimate such a n A R pn model and generate a bootstrap sample by resampling from the residuals. This sieve bootstrap enjoys a nice nonparametric property. We ...

متن کامل

Block bootstrap for periodic characteristics of periodically correlated time series

This research is dedicated to the study of periodic characteristics of periodically correlated time series such as seasonal means, seasonal variances and autocovariance functions. Two bootstrap methods are used: the extension of the usual Moving Block Bootstrap (EMBB) and the Generalized Seasonal Block Bootstrap (GSBB). The first approach is proposed, because the usual MBB does not preserve the...

متن کامل

Semiparametric Bootstrap Prediction Intervals in time Series

One of the main goals of studying the time series is estimation of prediction interval based on an observed sample path of the process. In recent years, different semiparametric bootstrap methods have been proposed to find the prediction intervals without any assumption of error distribution. In semiparametric bootstrap methods, a linear process is approximated by an autoregressive process. The...

متن کامل

Gradient descent algorithms for quantile regression with smooth approximation

Gradient based optimization methods often converge quickly to a local optimum. However, the check loss function used by quantile regression model is not everywhere differentiable, which prevents the gradient based optimization methods from being applicable. As such, this paper introduces a smooth function to approximate the check loss function so that the gradient based optimization methods cou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 2018

ISSN: 0090-5364

DOI: 10.1214/17-aos1580